白金分析师武超则最新分享:AI应用一定会有一轮大行情,甚至是泡沫化的行情
===2024-12-12 18:22:23===
o1的核心还是要证明“规模效应”(scaling law)的存在——模型的规模越大,模型越聪明。
GPT-3的数据集约为1亿,而GPT-4的数据集达到了1-2万亿。
理论上,o1模型证明,只要愿意投入更多的成本,增加算力和数据的投入,模型的“聪明程度”依然能够继续叠加。
我们看到,o1模型的表现已经不亚于博士生水平,特别是在一些挑战性任务中。
例如,在国际数学奥林匹克(IMO)考试中,GPT-4o的正确率仅为13%,而o1的正确率高达83%。
在代码能力上,o1模型也排在前89%,达到了非常优异的一个水平。
与此同时,全球范围内的开源模型进展也非常迅速。
海外Meta推出的Llama 3,还有国内的开源模型,如通义千问和智普,都是同等代际的开源模型。
开源模型的发展,会为应用未来的落地提供非常好的基础。
个性化方案
生成成本会大幅降低
最近,智能体(Agent)这一概念受到了广泛关注。
举个例子,相比于过去的模型是一个“人”,Agent更多是一个团队或者说小组的概念。
Agent是要有一个分析问题、理解问题,最后去解决问题的总揽能力,根据任务来准确地生成业务的执行流,然后再分工给不同的专家模型。
专家模型可能各有所长,
有的擅长解决数学问题,有的擅长解决代码问题,有的擅长解决图像问题等等,最终形成一个协作的智能群体。
这个时候,个性化方案的生成成本会大幅降低,模型与模型之间的摩擦成本也会大幅降低。
我们反推回来,这在人类的历史中也是很相似的。
比如说在医疗行业,现在多学科的会诊,随着现代医疗越来越细分,也变得很常见。
另外比如说在金融服务中,怎么提供个性化的金融服务方案?
在教育里,怎么提供个性化的教育?
这都会带来耳目一新的产品。
像微软在365 里面,集成了全新的 AI agent。
国内算力
最大机会还是在国产化
回过头来看,我们展望 2025 年,国内算力最大的机会,还是在国产化这条线上。
首先,我们简单分析需求,
scaling law的核心就是,不管是基于训练的需求,还是推理的需求,模型越大,效果就越好。
所以从这点上来讲,主流大厂应该还是会不断去卷模型的效果。
这个背后,算力支撑的规模,就会变得非常重要。
我们现在看下来,如果想要在大模型的训练端有所建树,至少是要万卡,甚至未来是 10 万卡的
=*=*=*=*=*=
当前为第3/6页
下一页-上一页-
=*=*=*=*=*=
返回新闻列表
返回网站首页